

# Библиотека paSync



Руководство пользователя

06.2024 версия dev2.0

# Содержание

| Исп | ольз | уемые термины и сокращения                                   | 3  |
|-----|------|--------------------------------------------------------------|----|
|     |      | 1e                                                           |    |
| 1   |      | цие сведения об организации резервирования в ОВЕН ПЛК210     |    |
| 1.  |      | Аппаратное резервирование питания контроллера                |    |
| 1.  | .2   | Программное резервирование контроллеров                      |    |
| 2   | Биб  | ілиотека paSync                                              | 9  |
| 2.  | .1   | Менеджер синхронизации (SyncMan)                             | 10 |
| 2.  | .2   | Определение ведущего (MasterSel)                             | 12 |
| 3   | Соз  | дание синхронизированных модулей                             | 15 |
| 4   | Син  | хронизация модулей. Менеджер синхронизации (SyncMan)         | 17 |
| 5   | Опр  | ределение ведущего контроллера (MasterSel)                   | 23 |
| 5.  | .1   | Пример реализации резервирования ПЛК с общими Mx210          | 23 |
| 5   | 2    | Пример реализации резервирования ПЛК с инливилуальными Му210 | 35 |

## Используемые термины и сокращения

**Ведомый контроллер** — контроллер, который находится в «горячем» резерве и синхронизирует данные с ведущим контроллером.

**Ведущий контроллер** – контроллер, с которым синхронизирует данные ведомый контроллер. В зависимости от реализованной схемы резервирования ведущий контроллер может принимать на себя роль мастера для линейки модулей ввода/вывода, выдавать сигналы на каналы вывода на своем борту и т.д.

Определение ведущего контроллера или переключение роли ведущего между контроллерами – алгоритм выбора текущей роли контроллера: ведущий или ведомый. Может быть как автоматическим, так и ручным (по команде оператора).

ОС – операционная система.

ПЛК – программируемый логический контроллер.

**Резервирование** (по ГОСТ 27.002-89) — способ обеспечения надежности объекта за счет использования дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций.

**Резервирование замещением** (по ГОСТ 27.002-89) или **100% «горячее» резервирование** — резервирование, при котором функции основного элемента передаются резервному только после отказа основного элемента.

**Синхронизация данных** — устранение различий между двумя аналогичными наборами данных контроллеров посредством обмена информацией по выделенным линиям связи.

**SQL** (**Structured Query Language**) — язык программирования для хранения и обработки информации в реляционной базе данных.

## Введение

Настоящее руководство описывает синхронизацию проектов и организацию резервирования для контроллеров ОВЕН, программируемых в среде Полигон. Подразумевается, что читатель обладает базовыми навыками работы с Полигон, поэтому общие вопросы (например, создание и загрузка проектов) в данном документе не рассматриваются — они подробно описаны в документах Руководство по программированию. Библиотека раСоге и Быстрый старт.

Синхронизация проектов и организация резервирования в среде Полигон осуществляется с помощью функциональных блоков из библиотеки *раЅупс*. Данная библиотека доступна для работы при наличии соответствующей лицензии runtime (см. описание лицензионных пакетов <u>на странице среды разработки Полигон</u>).

Документ соответствует версии среды Полигон 2 — **1929**, версии библиотеки *раЅупс* — **58** и выше.

## 1 Общие сведения об организации резервирования в ОВЕН ПЛК210

ОВЕН ПЛК210 с исполнительной средой Полигон поддерживают:

- Горячее аппаратное резервирование питания контроллера см. раздел 1.1;
- Горячее программное резервирование программы пользователя см. раздел 1.2.

## 1.1 Аппаратное резервирование питания контроллера

В контроллерах ПЛК210 предусмотрено два порта для подключения источников питания **24 В**:

- **Порт 1** основное питание;
- Порт 2 резервное питание.

Переход на резервное питание происходит при снижении напряжения основного питания менее **9 В**.

При восстановлении работоспособности основного источника питания контроллер автоматически возвращается на питание от основного источника.



## ПРИМЕЧАНИЕ

Информацию о наличии питающего напряжения на портах контроллера можно получить с помощью блока **210-Power** из библиотеки **paOwenIO**. Также блок **210-Power** позволяет задать режим индикации светодиода **Батарея** □. Подробнее см. в документе <u>Работа с</u> ОВЕН ПЛК. Библиотека paOwenIO.

## 1.2 Программное резервирование контроллеров

Программное резервирование пользовательской программы реализуется с помощью блоков из библиотеки **раЅупс** (см. описание библиотеки в <u>разделе 2</u>).

Библиотека *paSync* доступна для постоянной работы при наличии соответствующей лицензии (см. описание лицензионных пакетов <u>на странице среды разработки Полигон</u>).

Среда разработки Полигон предоставляет следующий функционал при организации резервирования контроллеров:

- 1. Дублирование (полное или частичное) пользовательских программ (модулей контроллеров в проекте Полигон) на стадии разработки.
- 2. Синхронизация данных дублированных программ контроллеров во время исполнения блоков **sync** и данных в разделе блока **SyncMan** из библиотеки **paSync**.
- 3. Автоматическое переключение ролей контроллеров ведущий и ведомый блок *MasterSel* из библиотеки *paSync*.
- 4. Ручное переключение ролей контроллеров ведущий и ведомый блок *MasterSel* из библиотеки *paSync*.

5. Среда не ограничивает пользователя в создании собственного алгоритма переключения ролей ведущий и ведомый контроллеров.

Варианты схем резервирования ОВЕН ПЛК с исполнительной средой Полигон практически не ограничены и могут модернизироваться в соответствии с требованиями конкретного автоматизируемого технологического объекта.

Примеры схем организации резервирования ОВЕН ПЛК с исполнительной средой Полигон:

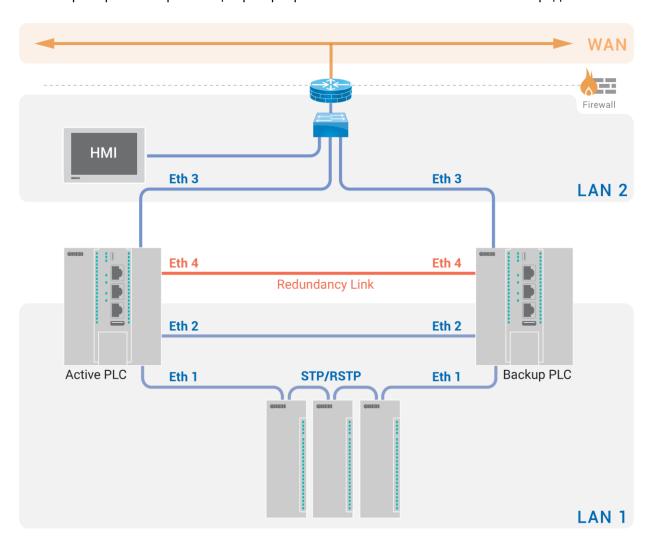



Рисунок 1.1 – Схема резервирования контроллеров с общей линейкой модулей Мх210

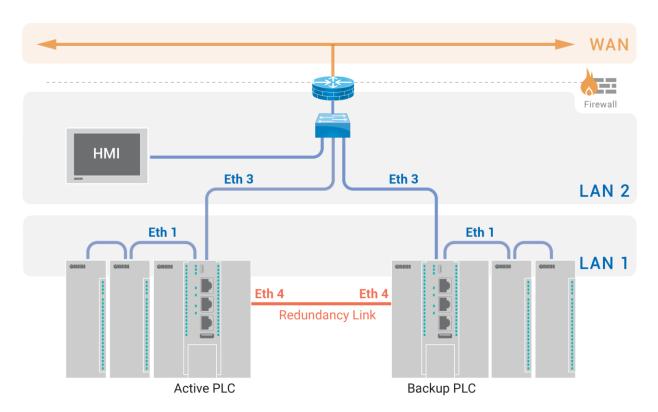



Рисунок 1.2 — Схема резервирования контроллеров с индивидуальными линейками модулей Mx210

**ПРИМЕЧАНИЕ**Модификации резервированной пары контроллеров не обязательно должны совпадать.

## примечание

Настройка режимов работы сетевых интерфейсов контроллера производится в webинтерфейсе конфигурации (см. <u>Руководство по эксплуатации</u>).

На этапе разработки проекта осуществляется полное или частичное дублирование пользовательских программ контроллеров (см. пример в <u>разделе 3</u>).

После запуска дублированных программ на контроллерах следует определение ведущего и ведомого контроллера (ручное или автоматическое) с помощью готового алгоритма, реализуемого блоком *MasterSel*, или алгоритмом пользователя.

Оба контроллера циклически выполняют пользовательскую программу.

Ведомый контроллер начинает работать в режиме ОРС UA-клиента (блок **SyncMan**) и оформляет подписку на данные (блоки **sync** и раздел блока **SyncMan**) ОРС UA-сервера ведущего контроллера. Таким образом, ведомый контроллер синхронизирует свои данные с данными ведущего контроллера (см. пример в разделе 4).

Обмен диагностическими сигналами двух контроллеров можно организовать по двум изолированным интерфейсам **Ethernet** с помощью готового блока **MasterSel** (см. примеры в разделе 5).

Условия переключения ведущего контроллера при использовании блока *MasterSel* описаны в справке среды Полигон и в <u>разделе 2.2</u>.

Алгоритм работы резервированной пары контроллеров при использовании блока *MasterSel*:

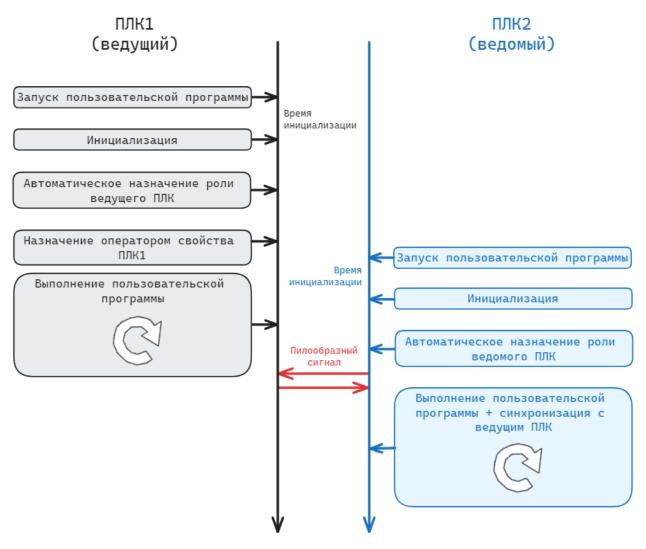



Рисунок 1.3 — Алгоритма работы резервированной пары контроллеров при использовании блока MasterSel

Примеры настройки резервированной пары контроллеров при использовании блока *MasterSel* приведены в разделе 5.

## 2 Библиотека раЅупс

*paSync* — библиотека, обеспечивающая синхронизацию данных между дублированными проектами контроллеров и организацию резервирования. Один из контроллеров выбирается **ведущим** — с ним синхронизируется **ведомый** контроллер.

Синхронизация сигналов во время работы контроллеров обеспечивается для блоков с поддержкой синхронизации из библиотеки *paSync*, которые реализуют базовые алгоритмы аналогично блокам из библиотек *paCore* и *paControls*. Работа данных блоков описана в справке среды на соответствующие библиотеки и в данном документе не рассматривается.

Для добавления библиотеки *paSync* в проект следует:

1. Перейти в меню *Окна/Проекты*. В появившемся окне отобразится текущий проект и добавленные библиотеки.

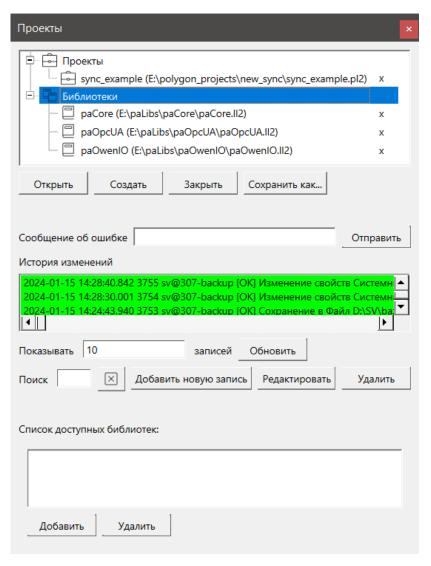



Рисунок 2.1 – Добавление библиотеки раSync в проект

- 2. Нажать кнопку *Открыть* и перейти в папку с файлами библиотеки, которую необходимо добавить.
- 3. В выпадающем списке выбрать тип файла Библиотека Полигон 2 (\*.II2).

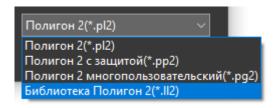



Рисунок 2.2 – Добавление библиотеки раSync в проект

4. В окне появится файл библиотеки с расширением .**II2**. Следует выбрать его и нажать открыть.

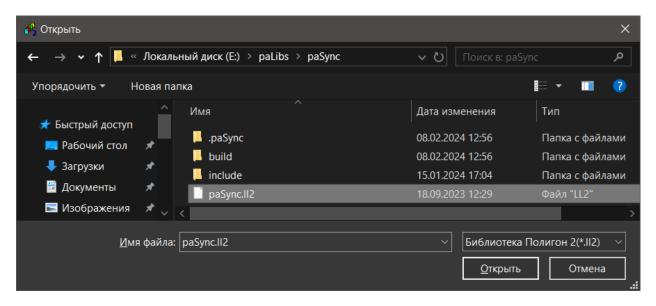



Рисунок 2.3 – Добавление библиотеки раSync в проект

Добавленная библиотека отобразится в окне Проекты.

## 2.1 Менеджер синхронизации (SyncMan)

Блок *SyncMan* обеспечивает синхронизацию данных между **ведущим** и **ведомым** контроллером. Обмен реализован через протокол **OPC UA**, в ведомом контроллере создается подписка на изменение данных от ведущего.

**SyncMan** основан на блоке **OpcUAClient** из библиотеки **paOpcUA**. Подробнее реализация протокола OPC UA в среде Полигон описана в документе <u>Обмен с верхним уровнем. Библиотека paOpcUA</u>.

Данный блок можно разместить только в Фоне.

Данные, необходимые для синхронизации блоков библиотеки *paSync*, добавляются в подписку автоматически. Дополнительные входы/выходы, которыми необходимо обмениваться с сервером, должны быть добавлены в раздел *Данные* внутри этого блока.

# i

## ПРИМЕЧАНИЕ

Если блоки библиотеки *paSync* находятся внутри составных блоков, то допускается до **7 вложенностей**.

Таблица 2.1 – Назначение входов и выходов SyncMan

|           | Dve sv.                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------|
|           | Входы                                                                                           |
| enb       | Разрешение на работу блока                                                                      |
|           | Синхронизация:                                                                                  |
|           | 0 — выключена;                                                                                  |
| sync      | 1 – включена                                                                                    |
| •         | На данный вход может быть подан инвертированный сигнал с выхода <b>L_Master</b> блока           |
|           | MasterSel или пользовательского блока, реализующего алгоритм определения                        |
|           | ведущего контроллера                                                                            |
| wait      | Таймаут ожидания ответа от сервера, мс (константный)                                            |
| lip       | Локальный IP адрес (константный)                                                                |
| lprt      | Локальный порт (константный)                                                                    |
| sdr       | Сетевой стек, для ПЛК ОВЕН "/" (константный)                                                    |
| rip       | IP адрес сервера (константный)                                                                  |
| rprt      | Порт сервера (константный)                                                                      |
| usr       | Логин для доступа к серверу (константный)                                                       |
| psw       | Пароль для доступа к серверу (константный)                                                      |
|           | Приоритет дополнительного потока (константный), в котором выполняется                           |
|           | синхронизация, обычно устанавливается выше других фоновых потоков, чтобы                        |
|           | обеспечить максимальную скорость синхронизации:                                                 |
|           | 0 — отключает создание дополнительного потока (обмен идет в текущем фоновом                     |
|           | потоке);                                                                                        |
| prio      | 147 — приоритет потока                                                                          |
|           | GDIANGUALIAE                                                                                    |
|           | ПРИМЕЧАНИЕ Маукимально возможное значение приоритета для конкретной ОС можно                    |
|           | Тутаксимально возможное значение приоритета для конкретной ос можно                             |
|           | определить с помощью блока <i>ThreadMan</i> из библиотеки <i>paCore</i> , раздел                |
| rst       | Системные.  Сброс максимальных значений временных счетчиков: выходов <b>mwrk</b> и <b>mscan</b> |
| 131       | Максимальное количество подмененных во время отладки входов/выходов, которое                    |
| fnum      | можно синхронизировать:                                                                         |
| ····u     | 0 – отключает синхронизацию подмененных значений.                                               |
| m_rbufs   | Вход для подключения блоков типа <b>BufSupEx</b> (циклический)                                  |
| 111_15015 | Выходы                                                                                          |
|           | Статус работы:                                                                                  |
|           | 0 – нет обмена;                                                                                 |
| sts       | 1 – обмен;                                                                                      |
|           | <b>2</b> – в резерве;                                                                           |
|           | >2 – переходное состояние                                                                       |
| svld      | Синхронизация работает                                                                          |
| sst       | Статус сервера в соответствии со спецификацией OPC UA (см. Part 5 – 12.6 ServerState)           |
|           | Дополнительный статус сервера <b>ServiceLevel</b> в соответствии со спецификацией ОРС UA        |
| ssl       | (cm. Part 4 – 6.6.2.4.2 ServiceLevel)                                                           |
| sid       | ІD подписки                                                                                     |
| ssn       | Номер уведомления подписки                                                                      |
| rcnt      | Количество принятых пакетов                                                                     |
| wcnt      | Количество отправленных пакетов                                                                 |
| prio      | Приоритет дополнительного потока (0 – отключен)                                                 |
| dsz       | Количество данных                                                                               |
| wrk       | Текущее время работы, мс                                                                        |
| mwrk      | Максимальное время работы, мс                                                                   |
| scan      | Текущее время получения данных, мс                                                              |
| J-0-11    | 1 - 2-17                                                                                        |

#### Продолжение таблицы 2.1

| mscan Максимальное время получения данных, мс |                                                                         |  |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| diag                                          | Диагностический счетчик                                                 |  |  |  |  |
| fnumo                                         | Количество синхронизируемых подмененных во время отладки входов/выходов |  |  |  |  |

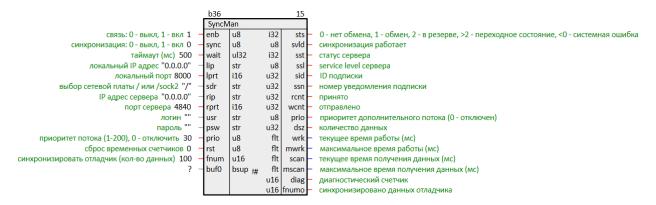



Рисунок 2.4 – Менеджер синхронизации дублированного контроллера (SyncMan)

Дополнительные входы и выходы, которыми необходимо обмениваться с сервером, могут быть добавлены в раздел **Данные** блока **SyncMan**.

Выходы функциональных блоков, добавленные в раздел *Данные* передаются на сервер всегда, в соответствии со свойствами (подробнее см. в описании блока *OpcUAClient* из библиотеки *paOpcUA*).

Входы функциональных блоков, добавленные в раздел *Данные*, читаются из сервера в соответствии со следующими правилами:

- 1. Если у входа есть свойство *ID источника/приемника*, то он читается из сервера всегда при наличии связи. Такие данные используются для двустороннего обмена между ведущим и ведомым независимо от текущей роли контроллера.
- 2. Если у входа нет свойства *ID источника/приемника*, то он читается из сервера только при включенной синхронизации (sync = 1). Такие данные используются для синхронизации вручную.

Для синхронизации параметров можно использовать блоки *BufSupEx,* подключенные к входам m\_rbufs блока *SyncMan* (дополнительные входы добавляются командой *Создать*). Значения параметров блока *BufSupEx* синхронизируются только при sync = 1.

Пример работы с блоком приведен в разделе 4.

## 2.2 Определение ведущего (MasterSel)

Блок *MasterSel* определяет роли **ведущий/ведомый** для двух контроллеров в резервированной конфигурации.

Таблица 2.2 – Назначение входов и выходов MasterSel

|             | Входы                                                                                                                                                                                                                          |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| me1         | Признак <b>ПЛК1</b> ( <b>me1=1</b> у <b>ПЛК1</b> ). Под <b>ПЛК1</b> подразумевается тот контроллер, который должен становится ведущим при неопределенных условиях (восстановление связи между двумя работающими контроллерами) |  |  |  |  |  |  |
| ready       | Внешнее условие готовности контроллера (разрешение стать основным)                                                                                                                                                             |  |  |  |  |  |  |
| init        | Запуск таймера на инициализацию                                                                                                                                                                                                |  |  |  |  |  |  |
| master1     | Команда ПЛК1 стать ведущим (внутри выделяется фронт с 0 на 1)                                                                                                                                                                  |  |  |  |  |  |  |
| master2     | Команда ПЛК2 стать ведущим (внутри выделяется фронт с 0 на 1)                                                                                                                                                                  |  |  |  |  |  |  |
| tpila       | Таймер залипания пилы, мс                                                                                                                                                                                                      |  |  |  |  |  |  |
| trecon      | Таймер восстановления связи, мс                                                                                                                                                                                                |  |  |  |  |  |  |
| tinit       | Таймер на инициализацию, мс                                                                                                                                                                                                    |  |  |  |  |  |  |
|             | Выходы                                                                                                                                                                                                                         |  |  |  |  |  |  |
|             | Признак ведущего:                                                                                                                                                                                                              |  |  |  |  |  |  |
| L_Master    | <b>0</b> — данный контроллер ведомый;                                                                                                                                                                                          |  |  |  |  |  |  |
|             | 1 — данный контроллер ведущий                                                                                                                                                                                                  |  |  |  |  |  |  |
| L_pila      | Диагностика: генерируемый пилообразный сигнал этого контроллера                                                                                                                                                                |  |  |  |  |  |  |
| L_ready     | Диагностика: готовность этого контроллера                                                                                                                                                                                      |  |  |  |  |  |  |
| L_init_over | it_over Инициализация завершена                                                                                                                                                                                                |  |  |  |  |  |  |
| conn_fault  | onn_fault Нет связи с соседним контроллером                                                                                                                                                                                    |  |  |  |  |  |  |
| R_pila_1    | _pila_1 Диагностика: пила соседнего контроллера по каналу связи 1                                                                                                                                                              |  |  |  |  |  |  |
| R_pila_2    | <b>Z_pila_2</b> Диагностика: пила соседнего контроллера по каналу связи 2                                                                                                                                                      |  |  |  |  |  |  |
| R_ready     | _ready Диагностика: готовность соседнего контроллера                                                                                                                                                                           |  |  |  |  |  |  |
| R_master    | <b>master</b> Диагностика: соседний контроллер ведущий                                                                                                                                                                         |  |  |  |  |  |  |

После запуска программы контроллера, выход блока **L\_Master = 0**, т.е. ПЛК является ведомым.

Срабатывание любого из условий переключения в роль ведущего возможно только после завершения инициализации (выход  $L_init\_over = 1$ ). Инициализация считается завершенной после окончания отсчета времени tinit от появления единицы на входе  $L_init$  (обычно сразу установлена 1).

Контроллер может стать ведущим в случаях:

- Если он ведомый и готов (L\_Master = 0 и L\_ready = 1), а соседний не готов (R\_ready = 0);
- По получению соседним ведущим контроллером команды на смену мастера (master1 или master2). Тогда этот контроллер станет ведущим, если он готов, или оба контроллера не готовы;
- После восстановления связи между ПЛК, когда оба ведомые, и этот контроллер  $\Pi$ ЛК1 (вход me1 = 1);
- При потере связи с соседним ПЛК (conn\_fault = 0).

Контроллер может стать ведомым в случаях:

- Если он ведущий и не готов (L\_Master = 1 и L\_ready = 0), а соседний готов (R\_ready = 1);
- По получению им команды на смену мастера (master1 или master2). Тогда другой контроллер станет ведущим, если он готов, или оба контроллера не готовы;

• После восстановления связи между контроллерами, когда оба ведущие, и этот ПЛК — ПЛК2 (вход me1 = 0).

В иных случаях смены ролей не происходит.

Готовность контроллера (выход **L\_ready** блока) формируется на основании двух условий по логике «И»:

- Есть внешнее условие готовности, заводимое на вход **ready**;
- Инициализация связи завершена.

С соседним контроллером через две выделенные линии синхронизации производится обмен данными и контролируется связь посредством передачи по каждой линии пилообразного сигнала:

- Если не происходит обновления значений пилообразных сигналов ни по одной линии за заданное время (вход **tpila**), то фиксируется потеря связи между ПЛК (выход **conn\_fault = 1**);
- Наличие связи фиксируется (выход conn\_fault = 0) с задержкой времени (вход trecon) после того, когда снова начинают изменяться значения передаваемых пилообразных сигналов;
- Текущие значения пилообразного сигнала выдаются на выходы: **L\_pila** и **R\_pila\_1**, **R\_pila\_2**, соответственно, собственный сигнал и сигнал от второго контроллера по двум линиям связи.

Для обмена двумя диагностическими сигналами в проекте контроллера должно быть добавлено два менеджера <u>SyncMan</u>, каждый из которых связывается по своему порту.

Выход **L\_Master** используется в прикладной программе для задания признака ведущего у линейки ввода/вывода. А его инверсия — как признак необходимости синхронизации (входы **sync** блоков **SyncMan**). Другие выходы блока могут использоваться для диагностики и в пользовательской логике.

# i

#### ПРИМЕЧАНИЕ

Блок *MasterSel* является составным, поэтому подробно логику его работы можно посмотреть на внутренних страницах. Для этого следует открыть библиотеку **paSync** в представлении *Дерево*.

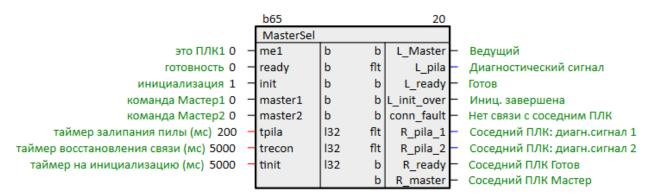



Рисунок 2.5 – Определение ведущего (MasterSel)

Пример работы с блоком приведен в разделе 5.

## 3 Создание синхронизированных модулей

Для реализации синхронизации модулей двух контроллеров следует дублировать их места работы. Для этого модули контроллеров должны находиться в одном проекте.

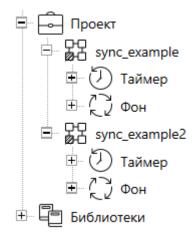



Рисунок 3.1 – Дерево проекта с двумя модулями

Для того чтобы дублировать место работы одного модуля следует:

- 1. Захватить место работы мышью и перетащить на второй модуль.
- 2. В выпадающем меню выбрать **Добавить**. Места работы (у первого и у второго модуля) подсветятся желтым.
  - 3. Аналогичное место работы у второго модуля следует удалить.

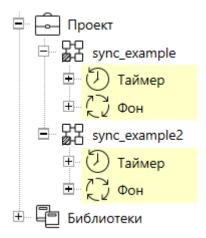



Рисунок 3.2 – Дерево проекта. Дублированные модули

Теперь все изменения в местах работы одного модуля будут дублироваться во втором модуле и наоборот.

i

## ВНИМАНИЕ

Важно понимать, что не только сами блоки и их расположение будет дублироваться во второй модуль, но и значения инициализации на входах блоков, комментарии, связи.

Для удобства перемещения по дублированным страницам модулей можно воспользоваться командой *Показать*. Вызвать ее можно в выпадающем меню при нажатии ПКМ на свободном месте страницы.

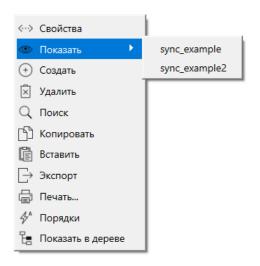



Рисунок 3.3 - Команда Показать

При работе с синхронизированными модулями для блоков, реализующих протоколы обмена, таких как *OpcUAServer* и *OpcUAClient* из библиотеки *paOpcUA*, *TcpIpSrA* и *TcpIpClA* из библиотеки *paCore* и др., при задании входов следует использовать SQL-запросы к соответствующим свойствам модуля.

Это необходимо для уникальных параметров контроллеров, таких как IP адреса. Для задания параметров «соседнего» контроллера рекомендуется использовать пользовательские свойства.

## Запрос IP адреса (prop\_ip):

"<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_ip"</sql>"

## Запрос номера порта отладчика (prop\_debug\_port):

<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND
type="prop\_debug\_port"</sql>

## Запрос пользовательского свойства Пользовательское свойство 00 (prop\_0):

<sql> SELECT value FROM blocks\_prop WHERE indx=:module AND
type="prop 0"</sql>

## 4 Синхронизация модулей. Менеджер синхронизации (SyncMan)

В <u>разделе 3</u> была рассмотрена синхронизация проектов на этапе разработки. Синхронизация проектов во время исполнения выполняется блоком менеджер синхронизации <u>SyncMan</u> для синхронизирующихся блоков из библиотеки *paSync*.

Синхронизация исполняемых проектов осуществляется по протоколу **ОРС UA**.

Блок *SyncMan* является модифицированным блоком OPC UA-клиента (блок *OpcUAClient* из библиотеки *paOpcUA*), реализующим одну подписку к серверу.

Каждый ПЛК, программируемый в Полигон, является ОРС UA-сервером, так как *Отпадчик* среды подключается к контроллеру как ОРС UA-клиент. Преднастроенный ОРС UA-сервер (блок *OpcUAServer* из библиотеки *paOpcUA*) добавляется автоматически при создании модуля из шаблона *Модуль с отпадчиком для контроллера* в месте работы *Фон*, программа *Debug*.

Подробно реализация протокола ОРС UA в среде Полигон описана в документе <u>Обмен с</u> верхним уровнем. Библиотека раОрсUA.

Рассмотрим синхронизацию программ в контроллерах на основе проекта, созданного в разделе 3. Для настройки следует:

1. Добавить на страницу таймера любого из дублированных модулей пару блоков из библиотеки *paSync*. Убедиться, что на аналогичной странице второго модуля изменения дублировались.

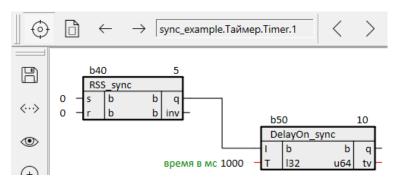
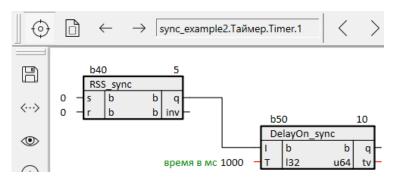
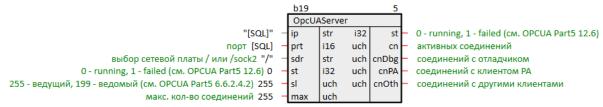



Рисунок 4.1 - Страница модуля





Рисунок 4.2 - Страница «соседнего» модуля

2. На любую страницу в месте работы **Фон** добавить блок **SyncMan**.

3. На входы блока **lip**, **lprt**, **rip**, **rprt** подадить SQL-запросы к свойствам модуля. Примеры SQL-запросов приведены в <u>разделе 3</u>. В данном примере вход **fnum = 0.** 

В данном примере блок *SyncMan* будет подключаться к ОРС UA-серверу отладчика, при необходимости можно создать отдельный ОРС UA-сервер, выделенный для синхронизации проектов.

ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_ip"</sql>"
prt = <sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_debug\_port"</sql>



lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_ip"</sql>"

lprt = <sql>SELECT value FROM blocks prop WHERE indx=:module AND type="prop 0"</sql> (Пользовательское свойство 00)

rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01)
rprt = <sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_2"</sql> (Пользовательское свойство 02)

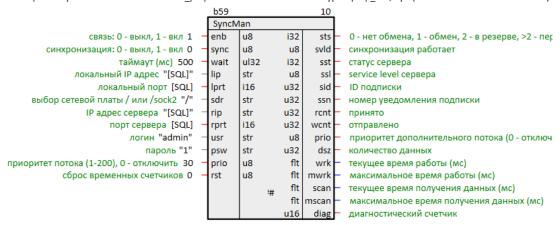



Рисунок 4.3 — Настройка ОРС UA-сервера и SyncMan

В данном примере в качестве «соседнего» контроллера будет выступать виртуальный контроллер.

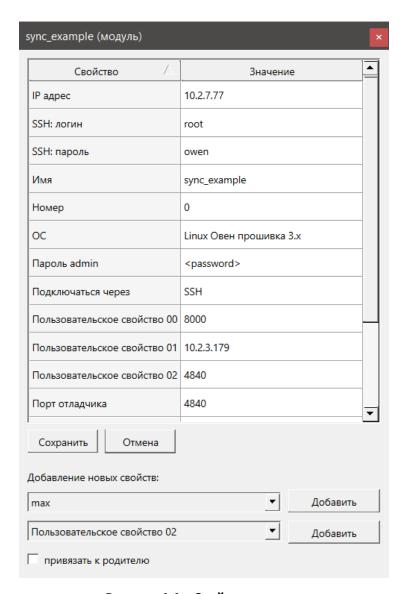



Рисунок 4.4 – Свойства модуля

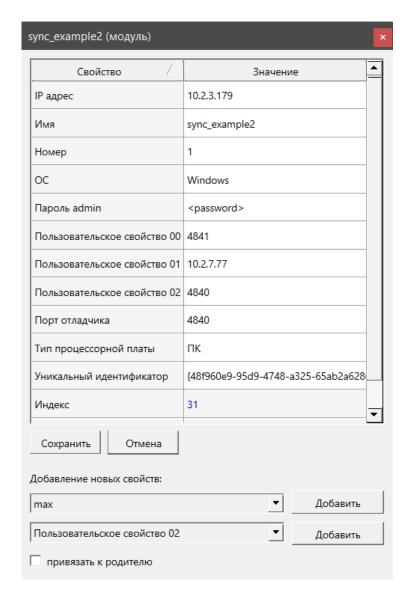



Рисунок 4.5 - Свойства «соседнего» модуля

4. Запустить программы на обоих контроллерах.

У блоков ОРС UA-серверов в обоих модулях отобразится активное подключение клиента ПА – блока *SyncMan*.

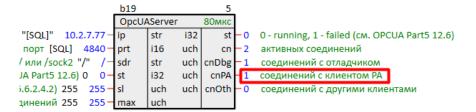



Рисунок 4.6 – OPC UA-сервер. Подписка SyncMan «соседнего» контроллера

После запуска входы **sync** блоков **SyncMan** в обоих модулях равны **0**. Синхронизации не происходит.

5. Установить в одном из модулей **sync = 1** — данный контроллер станет ведомым. Его блоки будут синхронизироваться с соответствующими блоками ведущего контроллера.

Выход блока **svld** установится в 1 – синхронизация работает.

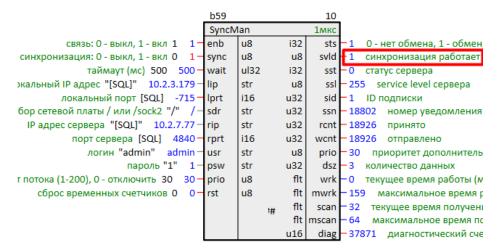



Рисунок 4.7 – SyncMan. Синхронизация включена – этот контроллер ведомый

6. Взвести триггер на странице ведущего контроллера.

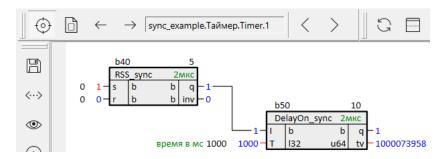



Рисунок 4.8 – Изменение выходов блоков со стороны ведущего контроллера

7. Проверить, что блок триггера на странице ведомого контроллера синхронизировался с блоком ведущего.

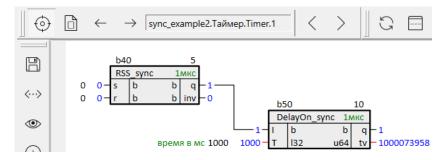



Рисунок 4.9 – Синхронизация блока ведомого контроллера

Если попытаться сбросить значение на выходе триггера у ведомого контроллера, подав  $\mathbf{1}$  на вход  $\mathbf{r}$ , — выход не сбросится.

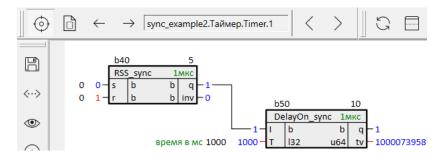



Рисунок 4.10 – Изменение со стороны ведомого контроллера не принимается

Помимо блоков с поддержкой синхронизации синхронизировать можно отдельные входы/выходы в модулях. Для этого следует добавить необходимые входы/выходы в раздел *Данные* внутри блока *SyncMan*.

См. описание синхронизации объектов данных из раздела Данные в разделе 2.1.

Добавить объект данных в раздел можно одним из следующих способов.

- 1. Открыть на одной странице блок *SyncMan*, на другой странице блок с входом/выходом, который необходимо добавить. Выделить вход/выход и с нажатым *Ctrl* перетащить его на блок *SyncMan*. Отпустить, выбрать команду *Добавить*.
- 2. Открыть блок *SyncMan* в дереве (со страницы это проще всего сделать командой *Показать в дереве*), раскрыть его. Вход/выход перетащить в раздел *Данные*, выбрать команду *Добавить*.

## 5 Определение ведущего контроллера (MasterSel)

В <u>разделе 4</u> было рассмотрено ручное включение синхронизации модулей, путем установки значения входа **sync** у блоков <u>SyncMan</u>.

Для автоматического определения ролей ведущего/ведомого контроллера можно воспользоваться готовым блоком <u>MasterSel</u> или написать свой алгоритм.

*MasterSel* предназначен для определения роли ведущего между двумя контроллерами. Контроль наличия связи между контроллерами осуществляется посредством передачи пилообразного сигнала по двум линиям связи. Линии связи организуются с помощью двух блоков *SyncMan* в проекте, каждый из которых осуществляет связь по своему порту.

Рассмотрим примеры реализации резервированной пары контроллеров на основе блока MasterSel.

В проекте должно быть создано два синхронизированных модуля. Создание синхронизированных модулей было рассмотрено в разделе 3.

## 5.1 Пример реализации резервирования ПЛК с общими Мх210

Рассмотрим пример реализации резервированной пары контроллеров с общей корзиной модулей серии Mx210. Данную схему удобно настраивать с помощью Мастера настройки в web-конфигураторе ПЛК (см. схему 4 в Руководстве по эксплуатации).



#### ПРИМЕЧАНИЕ

Настройка обмена в среде Полигон для **схемы 5** (см. <u>Руководство по эксплуатации</u>) принципиально не отличается от рассмотренной в данном разделе.

Для организации двух линий связи между контроллерами будем использовать интерфейсы LAN и REDU, интерфейс P3 будем использовать для подключения отладчиком среды Полигон.

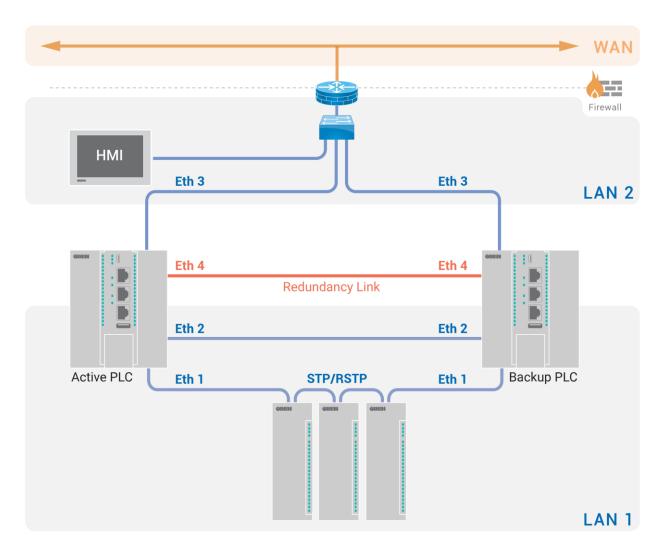
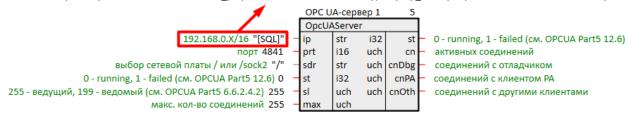



Рисунок 5.1 – Схема резервирования контроллеров с общей линейкой модулей Мх210


Таблица 5.1 – Настройка интерфейсов контроллеров

| Контроллер | Интерфейс LAN<br>Ethernet 12 | Интерфейс P3<br>Ethernet 3 | Интерфейс REDU<br>Ethernet 4 |
|------------|------------------------------|----------------------------|------------------------------|
| ПЛК1       | 192.168.0.12/16<br>RSTP      | DHCP-клиент                | 192.168.10.12/24             |
| ПЛК2       | 192.168.0.14/16<br>RSTP      | DHCP-клиент                | 192.168.10.14/24             |

Для организации двух линий связи следует:

- 1. Добавить в проект два ОРС UA-сервера блоки *OpcUAServer* из библиотеки *paOpcUA*.
- 2. Настроить OPC UA-серверы в соответствии с <u>табл. 5.1</u> с помощью SQL-запросов к свойствам модуля *Пользовательское свойство 00* (LAN) и *Пользовательское свойство 01* (REDU). Примеры SQL-запросов приведены в <u>разделе 3</u>.

ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00)



ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01) OPC UA-сервер 2 OpcUAServer 192.168.10.X/24 "[SQL]" 0 - running, 1 - failed (cm. OPCUA Part5 12.6) str i32 st prt i16 uch cn активных соединений выбор сетевой платы / или /sock2 "/" sdr str uch cnDbg соединений с отладчиком 0 - running, 1 - failed (cm. OPCUA Part5 12.6) 0 i32 uch cnPA соединений с клиентом РА st

uch

uch

uch

cnOth

соединений с другими клиентами

Рисунок 5.2 – Настройка ОРС UA-серверов: установка локальных IP адресов

3. Добавить в проект два блока *SyncMan* (OPC UA-клиенты).

макс. кол-во соединений 255

255 - ведущий, 199 - ведомый (см. OPCUA Part5 6.6.2.4.2) 255

4. Настроить блоки *SyncMan* в соответствии с <u>табл. 5.1</u> с помощью SQL-запросов к свойствам модуля: для локальных адресов также используем *Пользовательское свойство 00* и *Пользовательское свойство 01*, для IP адресов соседнего контроллера зададим *Пользовательское свойство 02* и *Пользовательское свойство 03*. В данном примере входы fnum = 0.

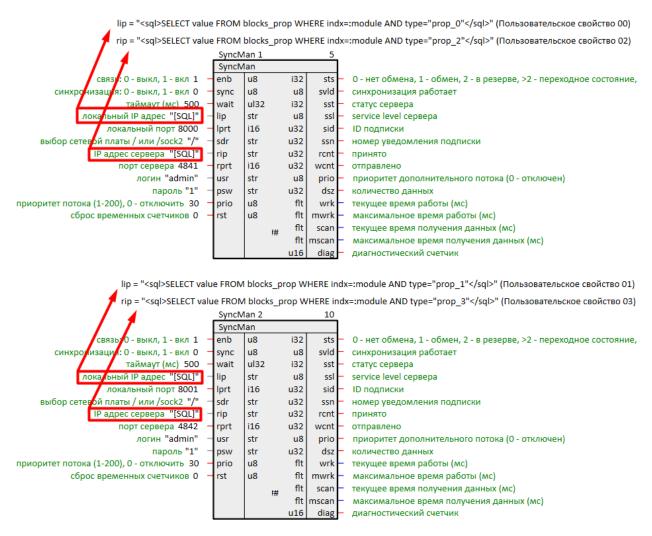



Рисунок 5.3 – Настройка SyncMan: установка IP адресов

5. Согласовать номера портов, выделяемых для обмена между ОРС UA-серверами и клиентами контроллеров.

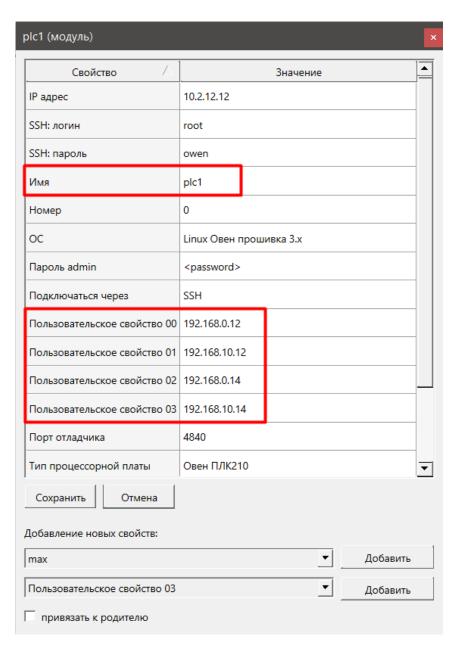



Рисунок 5.4 – Свойства модуля ПЛК1

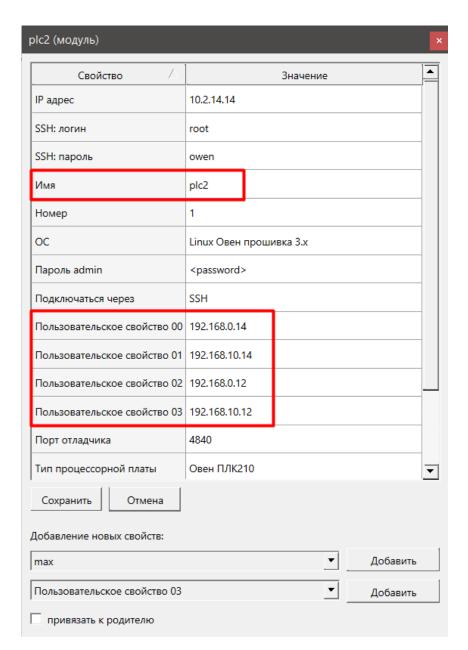
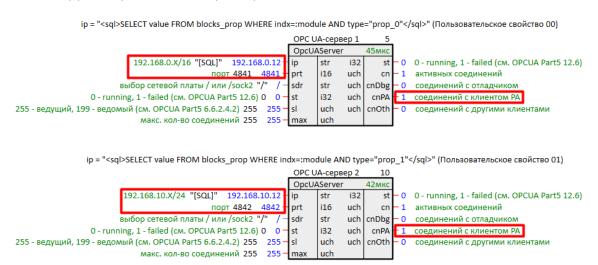
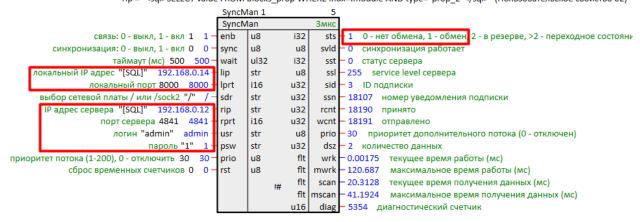
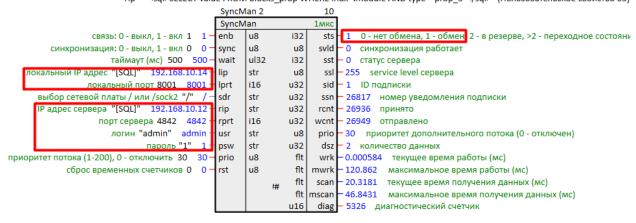



Рисунок 5.5 – Свойства модуля ПЛК2

## 6. Загрузить проекты на контроллеры.



Рисунок 5.6 – Успешный обмен: ОРС UA-серверы (ПЛК1)

lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00) rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_2"</sql>" (Пользовательское свойство 02)



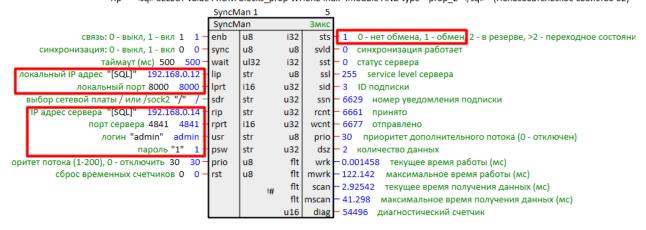
lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01)

rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_3"</sql>" (Пользовательское свойство 03)



## Рисунок 5.7 – Успешный обмен: OPC UA-клиенты SyncMan (ПЛК2)

ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00)


```
OPC UA-сервер 1
                                                                    OpcUAServer
                                                                                      44мкс
                            192.168.0.X/16 "[SQL]" 192.168.0.14
                                                                                             - 0 0 - running, 1 - failed (см. OPCUA Part5 12.6)
                                                                          str
                                                                                 i32
                                                                                          st
                                                                    ip
                                                порт 4841 4841
                                                                                                активных соединений
                                                                           i16
                                                                                 uch
                         выбор сетевой платы / или /sock2 "/
                                                                   sdr
                                                                          str
                                                                                 uch
                                                                                      cnDbg
                                                                                              0
                                                                                                соединений с отладчиком
                  0 - running, 1 - failed (cm. OPCUA Part5 12.6) 0
                                                               0
                                                                   st
                                                                          i32
                                                                                 uch
                                                                                       cnPA
                                                                                              · 1 соединений с клиентом РА
255 - ведущий, 199 - ведомый (см. OPCUA Part5 6.6.2.4.2) 255 255
                                                                                                 соединений с другими клиентами
                                                                   sl
                                                                          uch
                                                                                 uch
                                                                                      cnOth
                              макс, кол-во соединений 255 255
                                                                   max
                                                                          uch
```

ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01)

```
OPC UA-сервер 2
                                                                    OpcUAServer
                                                                                       41мкс
                          192.168.10.X/24 "[SQL]
                                                                                              - 0 0 - running, 1 - failed (см. OPCUA Part5 12.6)
                                                    192,168,10,14
                                                                    ip
                                                                           str
                                                                                  i32
                                                                                           st
                                                порт 4842
                                                                           i16
                                                                                  uch
                                                                                                   активных соединений
                                                                    prt
                                                                                          cn
                          выбор сетевой платы / или /sock2 "/"
                                                                    sdr
                                                                                 uch
                                                                                      cnDbg
                                                                                               0
                                                                                                  соединений с отладчиком
                                                                           str
                  0 - running, 1 - failed (cm. OPCUA Part5 12.6) 0 0
                                                                           i32
                                                                                  uch
                                                                                        cnPA
                                                                                              · 1 соединений с клиентом РА
                                                                    st
255 - ведущий, 199 - ведомый (см. OPCUA Part5 6.6.2.4.2) 255
                                                                           uch
                                                                                  uch
                                                                                       cnOth
                                                                                                  соединений с другими клиентами
                               макс, кол-во соединений 255
                                                                           uch
```

Рисунок 5.8 – Успешный обмен: ОРС UA-серверы (ПЛК2)

lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00) rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_2"</sql>" (Пользовательское свойство 02)



lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01)
rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_3"</sql>" (Пользовательское свойство 03)

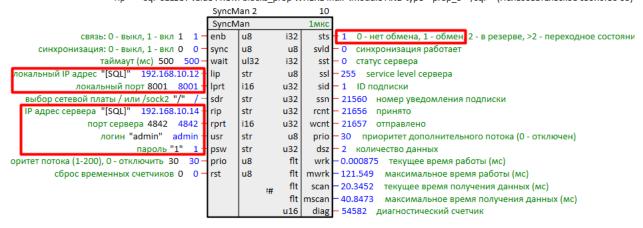



Рисунок 5.9 – Успешный обмен: ОРС UA-клиенты SyncMan (ПЛК1)

Убедившись, что настройка обмена произведена успешно, можно приступить к настройке блока выбора текущих ролей контроллеров <u>MasterSel</u>. Для этого следует:

1. Добавить блок *MasterSel* его в проект.

Выход **L\_Master** определяет роль контроллера: **L\_Master** =  $\mathbf{0}$  — контроллер ведомый, **L\_Master** =  $\mathbf{1}$  — контроллер ведущий.

- 2. Так как сигнал с выхода **L\_Master** может быть использован много раз в проекте, для удобства назначить его глобальной константой. Для этого в свойствах выхода **L\_Master** следует добавить свойства *Полный алиас* и *Глобальная константа*.
- 3. Вход блока **ready** (готовность) можно сразу задать **1** или завести другие сигналы из программы.



Рисунок 5.10 - Hастройка MasterSel

4. Провести скрытую связь между выходом **L\_Master** и входами **sync** блоков **SyncMan** через блок логического HE – **NOT** из библиотеки **paCore**, так как синхронизацию следует включать на ведомом контроллере, когда **L\_Master = 0**.

Провести скрытую связь можно кликая ПКМ на входе и выбирая в контекстном меню *Задать константу*.

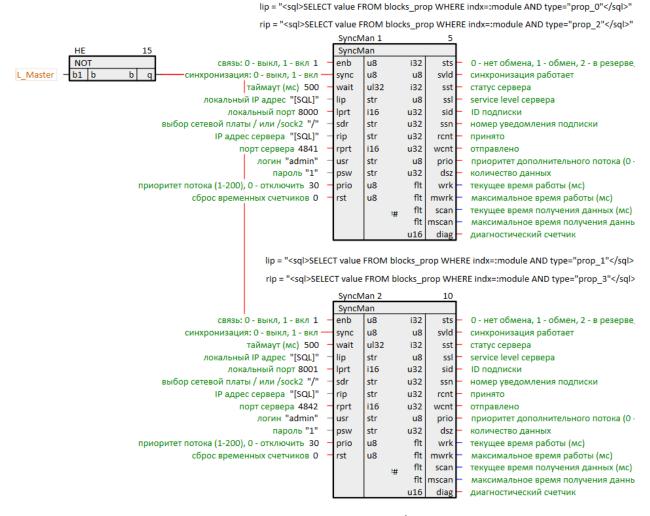



Рисунок 5.11 – Соединение MasterSel c SyncMan

 Запустить программу на первом контроллере. Он станет ведущим по истечении времени инициализации tinit. На выход L\_pila выводится диагностический сигнал контроллера. Выход conn\_fault = 1, так как программа на втором контроллере еще не включена.

|                                            | MasterSel |     |     | 5          |     |                              |
|--------------------------------------------|-----------|-----|-----|------------|-----|------------------------------|
|                                            | MasterSel |     |     | 79мкс      |     |                              |
| это ПЛК1 0   0 ·                           | me1       | b   | b   | L_Master   | 1-  | L_Master Ведущий————         |
| готовность 1 1                             | ready     | b   | flt | L_pila     | 28  | 0 Диагностический сигнал     |
| инициализация 1 1                          | init      | b   | b   | L_ready    | 1   | Готов                        |
| команда Мастер1 0 0                        | master1   | b   | bΙ  | _init_over | 1   | Иниц. завершена              |
| команда Мастер2 0 0 -                      | master2   | b   | b   | conn_fault | 1   | Нет связи с соседним ПЛК     |
| таймер залипания пилы (мс) 200 200         | tpila     | 132 | flt | R_pila_1   | - 0 | Соседний ПЛК: диагн.сигнал 1 |
| таймер восстановления связи (мс) 5000 5000 | trecon    | 132 | flt | R_pila_2   | - 0 | Соседний ПЛК: диагн.сигнал 2 |
| таймер на инициализацию (мс) 5000 5000     | tinit     | 132 | b   | R_ready    | - 0 | Соседний ПЛК Готов           |
|                                            |           |     | b   | R_master   | - 0 | Соседний ПЛК Мастер          |

Рисунок 5.12 – Работа MasterSel (ПЛК1)

6. Установить **me1 = 1** — данный контроллер имеет признак **ПЛК1**, он будет становиться ведущим при неопределенных условиях. На данный вход можно завести сигнал с внешней кнопки или с панели оператора и т.п.

# i

#### ПРИМЕЧАНИЕ

На входе **me1** можно задать константу при помощи SQL-запроса к пользовательскому свойству модуля и таким образом определить какой ПЛК является главным. Примеры запросов к свойствам модуля см. в разделе 3.

|                                          | MasterSel |         | 5           |                                                 |
|------------------------------------------|-----------|---------|-------------|-------------------------------------------------|
|                                          | MasterSel |         | 71мкс       |                                                 |
| это ПЛК1 0 1 ·                           | me1       | b b     | L_Master    | – 1— L_Master Ведущий————                       |
| готовность 1 1-                          | ready     | b flt   | L_pila      | <ul> <li>1920 Диагностический сигнал</li> </ul> |
| инициализация 1 1 —                      | init      | b b     | L_ready     | <b>–</b> 1 Готов                                |
| команда Мастер1 0 0 —                    | master1   | b b     | L_init_over | – 1 Иниц. завершена                             |
| команда Мастер2 0 0 —                    | master2   | b b     | conn_fault  | – 1 Нет связи с соседним ПЛК                    |
| таймер залипания пилы (мс) 200 200 —     | tpila     | l32 flt | R_pila_1    | – 0 Соседний ПЛК: диагн.сигнал 1                |
| таймер восстановления связи (мс) 5000 -  | trecon    | l32 flt | R_pila_2    | – 0 Соседний ПЛК: диагн.сигнал 2                |
| таймер на инициализацию (мс) 5000 5000 - | tinit     | l32 b   | R_ready     | − <b>0</b> Соседний ПЛК Готов                   |
|                                          |           | b       | R_master    | – 0 Соседний ПЛК Мастер                         |

Рисунок 5.13 – Работа MasterSel (ПЛК1): задание признака ПЛК1

7. Запустить программу на втором контроллере. Он станет **ведомым** по истечении времени инициализации **tinit**, так как он имеет признак **ПЛК2**, а соседний контроллер имеет признак **ПЛК1**.



Рисунок 5.14 – Работа MasterSel (ПЛК2)

На выходах **R\_pila\_1** и **R\_pila\_2** блока *MasterSel* у обоих контроллеров отобразится диагностический сигнал от соседнего контроллера. На выходе **R\_ready** появится  $\mathbf{1}$  — оба контроллера видят, что сосед готов.

На выходе **R\_Master** ведомого контроллера появится **1** – **ПЛК2** видит, что сосед – ведущий контроллер.

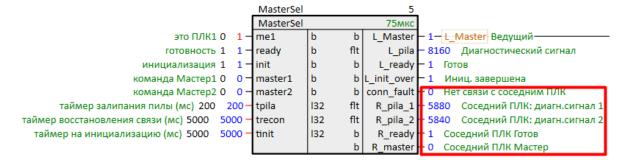



Рисунок 5.15 - Работа MasterSel (ПЛК1)




Рисунок 5.16 - Работа MasterSel (ПЛК2)

Входы **master1** и **master2** блока *MasterSel* отвечают за ручную смену ролей контроллеров. На них можно завести сигналы с внешних кнопок или с панели оператора и т.п.

Для того чтобы передать роль ведущего от ПЛК1 к ПЛК2 следует подать 1 на вход master2:

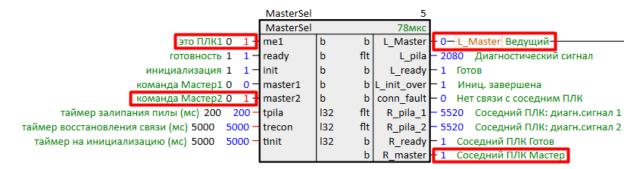



Рисунок 5.17 – Работа MasterSel (ПЛК1): передача роли ведущего контроллера

ПЛК2 станет ведущим:



Рисунок 5.18 – Работа MasterSel (ПЛК2): получение роли ведущего контроллера

Условия автоматической смены ролей прописаны в <u>разделе 2.2</u> и в справке среды на блок *MasterSel*.



#### ПРИМЕЧАНИЕ

Блок *MasterSel* является составным, поэтому подробно логику его работы можно посмотреть на внутренних страницах. Для этого следует открыть библиотеку **paSync** в представлении *Дерево*.

Выход **L\_Master** блока **MasterSel** можно вывести на внешние сигнальные лампы, панель оператора, а также разрешающие входы протоколов обмена данными.

Рассмотрим организацию обмена с модулем линейки **Mx210**. В данном примере используется модуль **MK210-311** (схема подключения на рис. 5.1).

Настроим обмен с модулем по Modbus TCP.

Подробно настройка обмена по протоколу **Modbus** в среде Полигон рассмотрена в документе Обмен по протоколу Modbus. Библиотека paModbus.

Для настройки следует завести на вход **enbl** сигнал **L\_Master**.

lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00)

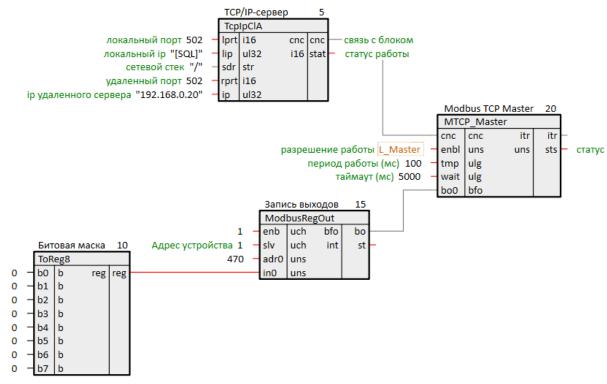



Рисунок 5.19 – Настройка обмена с модулем МК210-311

При данной настройке модуль **МК210-311** будет опрашивать тот контроллер, который в данный момент является ведущим.



## ПРИМЕЧАНИЕ

Пользователь может также настроить обмен с двумя одинаковыми наборами модулей в кольце, используя программный и/или внешний аппаратный решатель (арбитр) для определения достоверного сигнала — реализация резервирования корзины модулей **Мх210**.

## 5.2 Пример реализации резервирования ПЛК с индивидуальными Мх210

Рассмотрим пример реализации резервированной пары контроллеров с индивидуальными корзинами модулей серии <u>Mx210</u>.

# i

#### ПРИМЕЧАНИЕ

Настройка режимов работы сетевых интерфейсов контроллера производится в webинтерфейсе конфигурации (см. <u>Руководство по эксплуатации</u>).

В данном примере для организации двух линий связи между контроллерами будем использовать интерфейсы **P2** и **REDU**, интерфейс **P1** будет выделен для обмена с модулями Мх210, интерфейс **P3** будем использовать для подключения отладчиком среды Полигон.

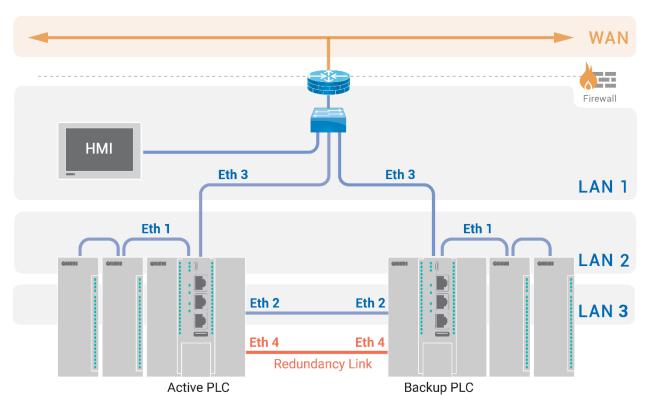



Рисунок 5.20 — Схема резервирования контроллеров с индивидуальными линейками модулей Мх210

Таблица 5.2 – Настройка интерфейсов контроллеров

| Контроллер | Интерфейс P1<br>Ethernet 1 | Интерфейс P2<br>Ethernet 2 | Интерфейс P3<br>Ethernet 3 | Интерфейс REDU<br>Ethernet 4 |
|------------|----------------------------|----------------------------|----------------------------|------------------------------|
| ПЛК1       | 192.168.0.12/16            | 192.168.1.12/24            | DHCP-клиент                | 192.168.10.12/24             |
| ПЛК2       | 192.168.0.14/16            | 192.168.1.14/24            | DHCP-клиент                | 192.168.10.14/24             |

Для организации двух линий связи следует:

- 1. Добавить в проект два ОРС UA-сервера блоки *OpcUAServer* из библиотеки *paOpcUA*.
- 2. Настроить OPC UA-серверы в соответствии с <u>табл. 5.2</u> с помощью SQL-запросов к свойствам модуля *Пользовательское свойство 00* (P2) и *Пользовательское свойство 01* (REDU). Примеры SQL-запросов приведены в <u>разделе 3</u>.

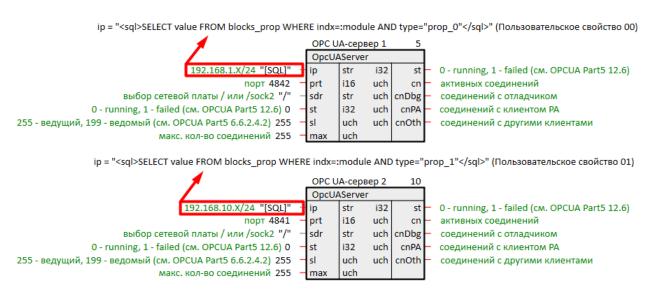



Рисунок 5.21 – Настройка ОРС UA-серверов: установка локальных IP адресов

- 3. Добавить в проект два блока **SyncMan** (OPC UA-клиенты).
- 4. Настроим блоки *SyncMan* в соответствии с <u>табл. 5.2</u> с помощью SQL-запросов к свойствам модуля: для локальных адресов также используем *Пользовательское свойство 00* и *Пользовательское свойство 01*, для IP адресов соседнего контроллера зададим *Пользовательское свойство 03* и *Пользовательское свойство 04*. В данном примере входы fnum = 0.

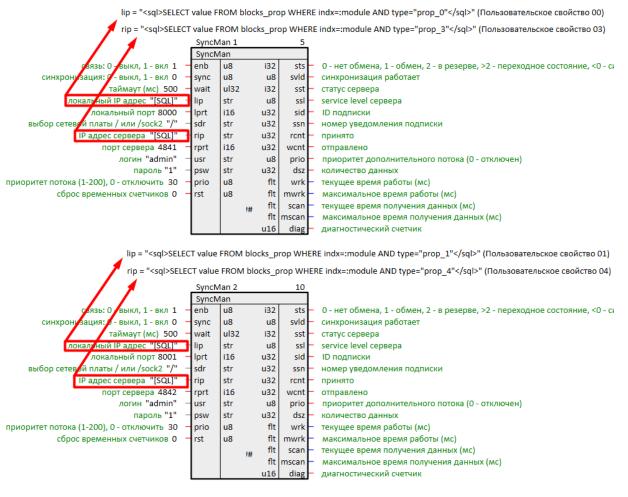



Рисунок 5.22 – Настройка SyncMan: установка IP адресов

5. Согласовать номера портов, выделяемых для обмена между ОРС UA-серверами и клиентами контроллеров.

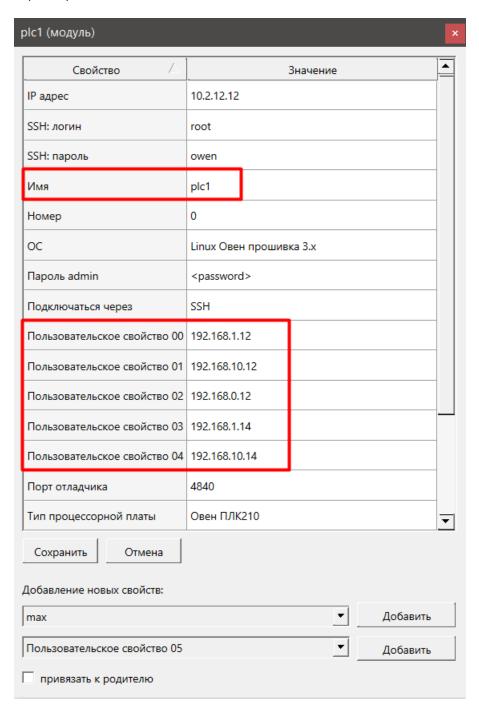



Рисунок 5.23 – Свойства модуля ПЛК1

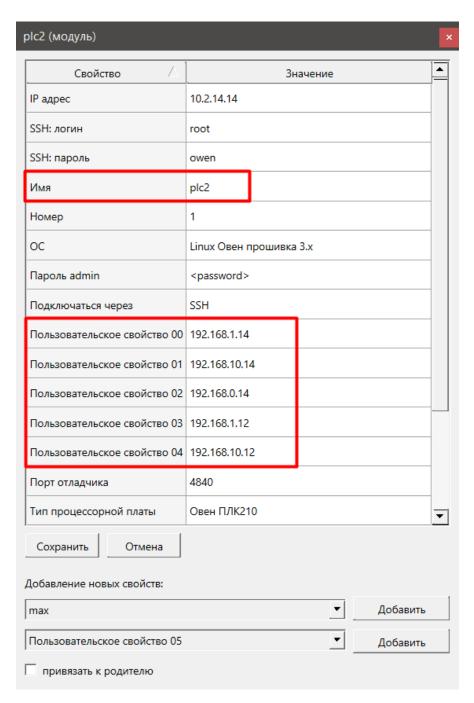



Рисунок 5.24 – Свойства модуля ПЛК2

6. Загрузить проекты в контроллеры.

ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00) OPC UA-сервер 1 OpcUAServer 44мкс 192.168.1.X/24 "[SQL]" 192,168,1,12 str i32 0 0 - running, 1 - failed (см. OPCUA Part5 12.6) ip st порт 4842 i16 uch 1 активных соединений prt cn выбор сетевой платы / или /sock2 "/" cnDbg соединений с отладчиком sdr str uch 0 0 - running, 1 - failed (cm. OPCUA Part5 12.6) 0 0 st i32 uch cnPA · 1 соединений с клиентом РА 255 - ведущий, 199 - ведомый (см. OPCUA Part5 6.6.2.4.2) 255 255 uch cnOth 0 соединений с другими клиентами ςl uch макс, кол-во соединений 255 255 max uch ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01) OPC UA-сервер 2 10 OpcUAServer 41мкс 192.168.10.X/24 "[SQL]" 192.168.10.12 0 - running, 1 - failed (cm. OPCUA Part5 12.6) i32 0 str st ip порт 4841 4841 prt i16 uch cn - 1 активных соединений cnDbg выбор сетевой платы / или /sock2 "/" соединений с отладчиком sdr str uch 0 соединений с клиентом РА 0 - running, 1 - failed (cm, OPCUA Part5 12.6) 0 0 st i32 uch cnPA 1

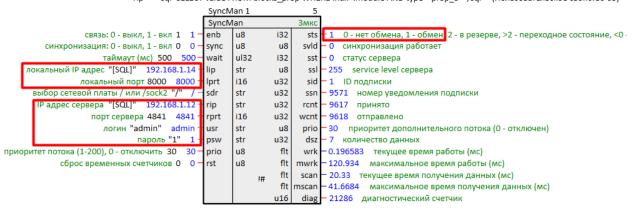
#### Рисунок 5.25 — Успешный обмен: ОРС UA-серверы (ПЛК1)

ςl

uch

uch

255 - ведущий, 199 - ведомый (см. OPCUA Part5 6.6.2.4.2) 255 255


макс. кол-во соединений 255

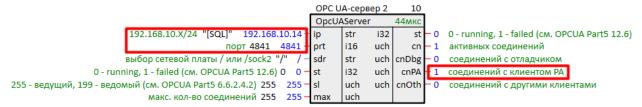
lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00) rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_3"</sql>" (Пользовательское свойство 03)

uch

cnOth

соединений с другими клиентами




lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01)
rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_4"</sql>" (Пользовательское свойство 04)

```
SyncMan 2
                                                SyncMan
                   связь: 0 - выкл, 1 - вкл 1 1
                                                                             1 0 - нет обмена, 1 - обмен 2 - в резерве, >2 - переходное состояние, <0 -
                                                       u8
                                                                        sts
          синхронизация: 0 - выкл, 1 - вкл 0 0 ·
                                                sync
                                                       u8
                                                                 u8
                                                                       svld
                                                                                синхронизация работает
                       таймаут (мс) 500 500
                                                       ul32
                                                                i32
                                                                             0 статус сервера
                                                wait
                                                                        sst
     локальный IP адрес "[SQL]" 192.168.10.14
                                                lip
                                                       str
                                                                 u8
                                                                        SS
                                                                            255 service level cepsepa
                  локальный порт 8001
                                                                             1 ID подписки
                                                Iprt
                                                       i16
                                                                u32
                                                                        sid
      выбор сетевой платы / или /sock2 "/"
                                                sdr
                                                       str
                                                                u32
                                                                       ssn
                                                                             9615 номер уведомления подписки
      IP адрес сервера "[SQL]" 192.168.10.12
                                                rip
                                                       str
                                                                u32
                                                                       rcnt
                                                                             9660
                                                                                   принято
                    порт сервера 4842 4842
                                                       i16
                                                rprt
                                                                u32
                                                                             9662 отправлено
                       логин "admin"
                                                                             30 приоритет дополнительного потока (0 - отключен)
                                       admin
                                                       str
                                                                 u8
                                                                       prio
                               пароль
                                                       str
                                                                u32
                                                                             7 количество данных
                                                psw
                                                                       dsz
приоритет потока (1-200), 0 - отключить 30
                                           30
                                                       u8
                                                                  flt
                                                                             0.292834 текущее время работы (мс)
                                                                       wrk
                                                prio
             сброс временных счетчиков 0 0
                                                rst
                                                       u8
                                                                  flt
                                                                     mwrk
                                                                             121.079 максимальное время работы (мс)
                                                                  flt
                                                                      scan
                                                                            10.1445
                                                                                      текущее время получения данных (мс)
                                                                 flt
                                                                     mscan
                                                                             42.8199 максимальное время получения данных (мс)
                                                                            - 21274 диагностический счетчик
                                                                      diag
```

Рисунок 5.26 – Успешный обмен: OPC UA-клиенты SyncMan (ПЛК2)

```
OPC UA-сервер 1
                                                                   OpcUAServer
                                                                                    49мкс
                            192.168.1.X/24 "[SQL]" 192.168.1.14
                                                                         str
                                                                                i32
                                                                                           - 0 0 - running, 1 - failed (см. OPCUA Part5 12.6)
                                                                  prt
                                               порт 4842
                                                                         i16
                                                                                uch
                                                                                        cn - 1 активных соединений
                         выбор сетевой платы / или /sock2
                                                                         str
                                                                                     cnDbg
                                                                                                соединений с отладчиком
                                                                  sdr
                                                                                uch
                                                                                             0
                  0 - running, 1 - failed (cm. OPCUA Part5 12.6) 0 0
                                                                                     cnPA
                                                                                           · 1 соединений с клиентом РА
                                                                  st
                                                                         i32
                                                                               uch
255 - ведущий, 199 - ведомый (см. OPCUA Part5 6.6.2.4.2) 255 255
                                                                  sl
                                                                         uch
                                                                               uch
                                                                                    cnOth 0 соединений с другими клиентами
                              макс, кол-во соединений 255
                                                                  max
                                                                         luch
```

ip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01)



## Рисунок 5.27 – Успешный обмен: ОРС UA-серверы (ПЛК2)

lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_0"</sql>" (Пользовательское свойство 00) rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_3"</sql>" (Пользовательское свойство 03)

```
SyncMan 1
                                                SyncMan
                                                                      2MKC
                   связь: 0 - выкл, 1 - вкл 1 1
                                                enb
                                                       u8
                                                                 i32
                                                                             · 1 0 - нет обмена, 1 - обмен 2 - в резерве, >2 - переходное состояние, <0 -
          синхронизация: 0 - выкл, 1 - вкл 0 0 -
                                                       u8
                                                                 u8
                                                                       svld
                                                                             0 синхронизация работа
                       таймаут (мс) 500
                                                wait
                                                       ul32
                                                                 i32
                                                                        sst
                                                                             0 статус сервера
      окальный IP адрес "[SQL]" 192.168.1.12
                                                                 u8
                                                                             255 service level сервера
                                                lip
                                                       str
                                                                        SS
                  локальный порт 8000
                                                       i16
                                                                u32

    1 ID подписки

                                                Iprt
                                                                        sid
       выбор сетевой платы / или /sock2
                                                                            - 17184 номер уведомления подписки
                                                sdr
                                                       str
                                                                u32
                                                                        ssn
       IP адрес сервера "[SQL]"
                                192,168,1,14
                                                rip
                                                       str
                                                                u32
                                                                       rcnt
                                                                            - 17262 принято
                    порт сервера 4841 4841
                                                       i16
                                                                u32
                                                                             - 17263 отправлено
                                                rprt
                                                                      wcnt
                       логин "admin" admin
                                                                 u8
                                                                             30 приоритет дополнительного потока (0 - отключен)
                               пароль
                                                       str
                                                                u32
                                                                             7 количество данных
приоритет потока (1-200), 0 - отключить 30 30
                                                       u8
                                                                  flt
                                                                       wrk
                                                                             0.217584 текущее время работы (мс)
                                                prio
             сброс временных счетчиков 0
                                                       u8
                                                                  flt
                                                                             121.078 максимальное время работы (мс)
                                                rst
                                                                      mwrk
                                                                  flt
                                                                             20.328 текущее время получения данных (мс)
                                                                      scan
                                                                  flt
                                                                             120.776 максимальное время получения данных (мс)
                                                                     mscan
                                                                u16
                                                                       diag
                                                                             34252 диагностический счетчик
```

lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_1"</sql>" (Пользовательское свойство 01) rip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_4"</sql>" (Пользовательское свойство 04)

20.3321 текущее время получения данных (мс)

34245 диагностический счетчик

максимальное время получения данных (мс)

SyncMan 1мкс связь: 0 - выкл. 1 - вкл 1 1 - 1 0 - нет обмена, 1 - обмен 2 - в резерве, >2 - переходное состояние, <0 enb u8 i32 sts синхронизация: 0 - выкл, 1 - вкл 0 0 - sync u8 u8 svld 0 синхронизация работает таймаут (мс) 500 500 wait ul32 i32 0 статус сервера окальный IP адрес "[SQL]" 192.168.10.12 u8 - 255 service level сервера локальный порт 8001 8001 Iprt i16 u32 1 ID подписки выбор сетевой платы / или /sock2 "/" u32 17076 номер уведомления подписки str ssn IP адрес сервера "[SQL]" 192.168.10.14 u32 - 17151 принято str rip rcnt порт сервера 4842 4842 i16 rprt u32 wcnt 17155 отправлено логин "admin" admin usr str u8 prio 30 приоритет дополнительного потока (0 - отключен) пароль "1" str u32 dsz 7 количество данных psw приоритет потока (1-200), 0 - отключить 30 30 u8 flt - 0.179667 текущее время работы (мс) wrk сброс временных счетчиков 0 0 u8 flt 120.49 максимальное время работы (мс)

SyncMan 2

Рисунок 5.28 – Успешный обмен: ОРС UA-клиенты SyncMan (ПЛК1)

mscan

100.281

flt

Убедившись, что настройка обмена произведена успешно, можно приступить к настройке блока выбора текущих ролей контроллеров <u>MasterSel</u>. Для этого следует:

## 1. Добавить блок *MasterSel* в проект.

Выход **L\_Master** определяет роль контроллера: **L\_Master** =  $\mathbf{0}$  — контроллер ведомый, **L\_Master** =  $\mathbf{1}$  — контроллер ведущий.

- 2. Так как сигнал с выхода **L\_Master** может быть использован много раз в проекте, для удобства назначить его глобальной константой. Для этого в свойствах выхода **L\_Master** следует добавить свойства **Полный алиас** и **Глобальная константа**.
- 3. Вход блока **ready** (готовность) можно сразу задать **1** или завести на него другие сигналы из программы.

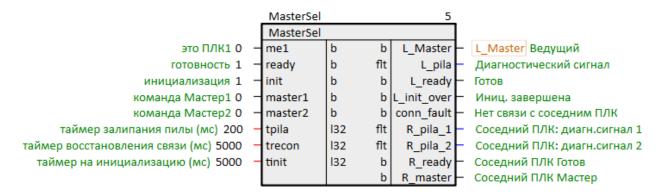



Рисунок 5.29 - Hастройка MasterSel

Провести скрытую связь между выходом L\_Master и входами sync блоков SyncMan через блок логического НЕ – NOT из библиотеки paCore, так как синхронизацию следует включать на ведомом контроллере, когда L\_Master = 0.

Провести скрытую связь можно кликая ПКМ на входе и выбирая в контекстном меню *Задать константу*.

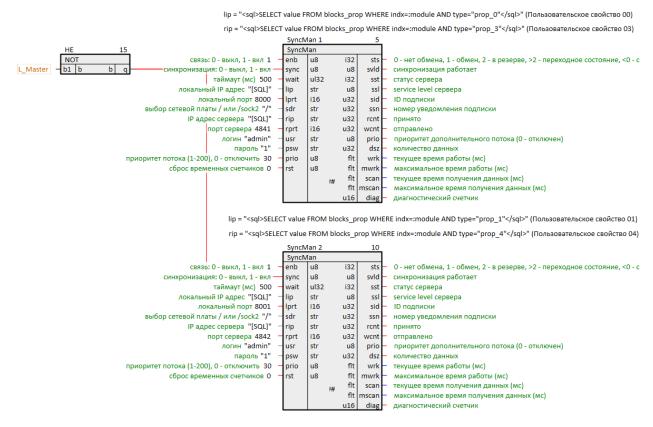



Рисунок 5.30 – Соединение MasterSel c SyncMan

5. Запустить программу на первом контроллере. Он станет **ведущим** по истечении времени инициализации **tinit**. На выход **L\_pila** выводится диагностический сигнал контроллера. Выход **conn fault = 1**, так как программа на втором контроллере еще не включена.

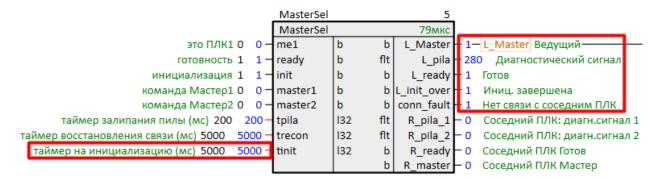



Рисунок 5.31 – Работа MasterSel (ПЛК1)

Установим me1 = 1 — данный контроллер имеет признак  $\Pi J K 1$ , он будет становиться ведущим при неопределенных условиях. На данный вход можно завести сигнал с внешней кнопки или с панели оператора и т.п.

|                                         | MasterSel |         | 5           |                                     |
|-----------------------------------------|-----------|---------|-------------|-------------------------------------|
|                                         | MasterSel | 71мкс   |             |                                     |
| это ПЛК1 0 1 <del>-</del>               | me1       | b b     | L_Master    | - 1— L_Master Ведущий————           |
| готовность 1 1-                         | ready     | b flt   | L_pila      | - 1920 Диагностический сигнал       |
| инициализация 1 1—                      | init      | b b     | L_ready     | - 1 Готов                           |
| команда Мастер1 0 0 —                   | master1   | b b     | L_init_over | – 1 Иниц. завершена                 |
| команда Мастер2 0 0 —                   | master2   | b b     | conn_fault  | – 1 Нет связи с соседним ПЛК        |
| таймер залипания пилы (мс) 200 200 —    | tpila     | l32 flt | R_pila_1    | - 0 Соседний ПЛК: диагн.сигнал 1    |
| таймер восстановления связи (мс) 5000 — | trecon    | l32 flt | R_pila_2    | - 0 Соседний ПЛК: диагн.сигнал 2    |
| таймер на инициализацию (мс) 5000 —     | tinit     | l32 b   | R_ready     | – <mark>0</mark> Соседний ПЛК Готов |
|                                         |           | b       | R_master    | – 0 Соседний ПЛК Мастер             |

Рисунок 5.32 – Работа MasterSel (ПЛК1): задание признака ПЛК1

Запустим программу на втором контроллере. Он станет **ведомым** по истечении времени инициализации **tinit**, так как он имеет признак **ПЛК2**, а соседний контроллер имеет признак **ПЛК1**.

|                                              | MasterSel |         | 5           |                                                |
|----------------------------------------------|-----------|---------|-------------|------------------------------------------------|
|                                              | MasterSel |         | 77мкс       |                                                |
| это ПЛК <b>1 0</b> 0 <del>-</del>            | me1       | b b     | L_Master    | • 0— L_Master Ведущий—————                     |
| готовность 1 1-                              | ready     | b flt   | L_pila      | 2960 Диагностический сигнал                    |
| инициализация 1 1—                           | init      | b b     | L_ready     | • 1 Готов                                      |
| команда Мастер1 0 0 —                        | master1   | b b     | L_init_over | 1 Иниц. завершена                              |
| команда Мастер2 0 0 —                        | master2   | b b     | conn_fault  | <ul> <li>0 Нет связи с соседним ПЛК</li> </ul> |
| таймер залипания пилы (мс) 200 200 —         | tpila     | l32 flt | R_pila_1    | – 800.001 Соседний ПЛК: диагн.сигнал 1         |
| таймер восстановления связи (мс) 5000 5000 - | trecon    | l32 flt | R_pila_2    | – 840.001 Соседний ПЛК: диагн.сигнал 2         |
| таймер на инициализацию (мс) 5000 5000       | tinit     | l32 b   | R_ready     | − 1 Соседний ПЛК Готов                         |
|                                              |           | b       | R_master    | — 1 Соседний ПЛК Мастер                        |

Рисунок 5.33 – Работа MasterSel (ПЛК2)

На выходах **R\_pila\_1** и **R\_pila\_2** блока **MasterSel** у обоих контроллеров отобразится диагностический сигнал от соседнего контроллера. На выходе **R\_ready** появится  $\mathbf{1}$  — оба контроллера видят, что сосед готов.

На выходе **R\_Master** ведомого контроллера появится **1** – **ПЛК2** видит, что сосед – ведущий контроллер.

|                                              | MasterSel |         | 5           | _                                               |
|----------------------------------------------|-----------|---------|-------------|-------------------------------------------------|
|                                              | MasterSel |         | 75мкс       |                                                 |
| это ПЛК1 0 <b>1</b> -                        | me1       | b b     | L_Master    | — 1— L_Master Ведущий—————                      |
| готовность 1 1-                              | ready     | b fl    | t L_pila    | <ul> <li>8160 Диагностический сигнал</li> </ul> |
| инициализация 1 1-                           | init      | b b     | L_ready     | — 1 Готов                                       |
| команда Мастер1 0 0 -                        | master1   | b b     | L_init_over | — 1 Иниц. завершена                             |
| команда Мастер2 0 0 -                        | master2   | b t     | conn_fault  | - 0 Нет связи с соседним ПЛК                    |
| таймер залипания пилы (мс) 200 200-          | tpila     | 132 fl: | t R_pila_1  | - 5880 Соседний ПЛК: диагн.сигнал 1             |
| таймер восстановления связи (мс) 5000 5000 - | trecon    | l32 fl  | t R_pila_2  | - 5840 Соседний ПЛК: диагн.сигнал 2             |
| таймер на инициализацию (мс) 5000 5000 -     | tinit     | 132 b   | R_ready     | - 1 Соседний ПЛК Готов                          |
|                                              |           | l t     | R master    | <ul> <li>О Соседний ПЛК Мастер</li> </ul>       |

Рисунок 5.34 - Работа MasterSel (ПЛК1)

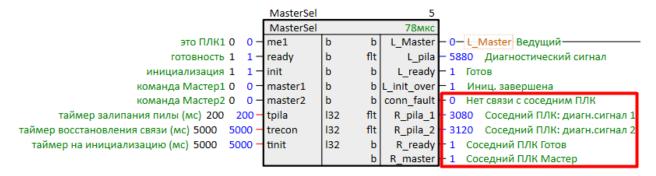



Рисунок 5.35 - Работа MasterSel (ПЛК2)

Входы **master1** и **master2** блока *MasterSel* отвечают за ручную смену ролей контроллеров. На них можно завести сигналы с внешних кнопок или с панели оператора и т.п.

Для того чтобы передать роль ведущего от ПЛК1 к ПЛК2 следует подать 1 на вход master2:

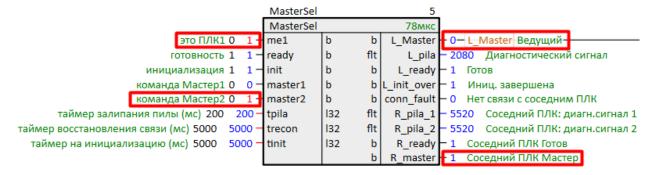



Рисунок 5.36 – Работа MasterSel (ПЛК1): передача роли ведущего контроллера

ПЛК2 станет ведущим:




Рисунок 5.37 – Работа MasterSel (ПЛК2): получение роли ведущего контроллера

Условия автоматической смены ролей прописаны в <u>разделе 2.2</u> и в справке среды на блок *MasterSel*.



#### ПРИМЕЧАНИЕ

Блок *MasterSel* является составным, поэтому подробно логику его работы можно посмотреть на внутренних страницах. Для этого следует открыть библиотеку **paSync** в представлении *Дерево*.

Выход **L\_Master** блока *MasterSel* можно вывести на внешние сигнальные лампы, панель оператора и т.д.

Рассмотрим организацию обмена с модулями линейки **Mx210**. В данном примере используются модули **MK210-311** (схема подключения на рис. 5.20).

Для настройки TCP/IP-сервера в соответствии с <u>табл. 5.2</u> используем SQL-запрос к свойству модуля *Пользовательское свойство 02* (P1).

Настроим обмен с модулями по Modbus TCP.

Подробно настройка обмена по протоколу **Modbus** в среде Полигон рассмотрена в документе Обмен по протоколу Modbus. Библиотека раModbus.

lip = "<sql>SELECT value FROM blocks\_prop WHERE indx=:module AND type="prop\_2"</sql>" (Пользовательское свойство 02)

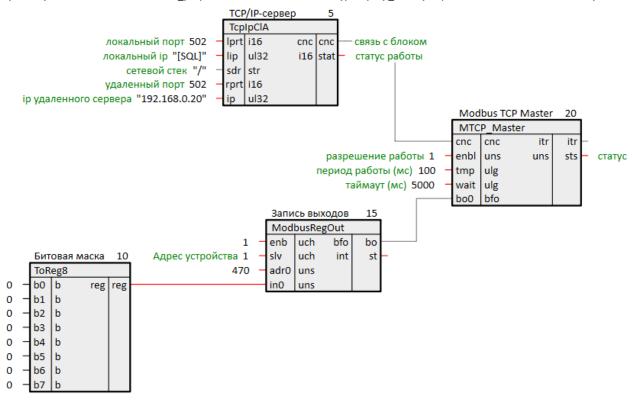



Рисунок 5.38 – Настройка обмена с модулем МК210-311

При данной настройке каждый контроллер будет опрашивать свой модуль МК210-311.



## ПРИМЕЧАНИЕ

Пользователь может также настроить обмен с дублированными модулями в корзине, используя программный и/или внешний аппаратный решатель (арбитр) для определения достоверного сигнала — реализация резервирования корзины модулей Мх210.



Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

Веб-сайт ООО "ПромАвтоматика-Софт": www.pa.ru

per.:1-RU-dev-2.0